

I. Trees

Definition 1. (Acyclic graph).
An acyclic graph (or a forest) is one that contains no cycles.

Definition 2. (Tree).
A tree is a connected acyclic graph.

(a)

(b)

(c)

Figure 1: (a) Tree (b) Forest (c) Graph

Remark.

(i) Each component of an acyclic graph is a tree.
(ii) An acyclic graph is a simple graph. Hence, every tree is a simple graph.
(iii) A subgraph of a tree is an acyclic graph.

Remark.

If $e \in E(G)$, then $\omega(G-e)=\omega(G)$ or $\omega(G-e)=\omega(G)+1$.
Definition 3. (spanning tree)
A spanning subgraph of a graph, which is also a tree, is called a spanning tree of the graph.

Figure 2: Spanning tree

Theorem 1. Let $G=(p, q)$ graph. The following statments are equivalent.

1. G is a tree.
2. Every two vertices of G are connected by a unique path.
3. G is conneced and $p=q+1$.
4. G is acyclic and $p=q+1$.

Proof. (1) $\Rightarrow(2)$:
Assume G be a tree.
By definition, G is connected
Therefore any two vertices of G are connected by a path.
To prove : Any two vertices of G are connected by a unique path.
Proof by contradiction.
Assume that there are two distinct (u, v)-paths P_{1} and P_{2} in G.
Path P_{1} is : $u v$
Path P_{2} is : $u P_{2} v$
Clearly, the graph $\left(P_{1} \cup P_{2}\right)$ is connected.
But then $\left(P_{1} \cup P_{2}\right)=u P_{2} v u$ is a cycle in G, a contradiction to G is acyclic.
Thus, every two vertices of G are connected by a unique path.
$(2) \Rightarrow(3)$:
Assume every two vertices of G are connected by a unique path.
To prove : G is conneced and $p=q+1$.
Since every two vertices of G are connected by a unique path, $\Rightarrow G$ is connected.
Now we prove that $q=p-1$.
Proof by induction on p.
If $p=1, G \cong K_{1}$ and therefore $q=0$. Hence $p-1=1-1=0=q$.
Suppose that the theorem is true for all graphs G on fewer than p vertices.
Let G be a connected graph on $p \geq 2$ vertices.
Let $e=u v \in E(G)$.
Consider $G-e$.
As G is conneced and any two vertices of G are connected by a unique path.
$\Rightarrow u e v$ is the unique (u, v)-path in G
$\Rightarrow G-e$ contains no (u, v)-path.
$\Rightarrow G-e$ is disconnected.
G is connected and $G-e$ is disconnected implies that
$\omega(G-e)=\omega(G)+1=1+1=2$.
Let G_{1} and G_{2} be the two components of $G-e$.
Both G_{1} and G_{2} are components \Rightarrow both G_{1} and G_{2} are connected.
Moreover, $p\left(G_{1}\right)<p(G)$ and $p\left(G_{2}\right)<p(G)$.
Therefore, by the induction hypothesis, $q\left(G_{1}\right)=p\left(G_{1}\right)-1$ and $q\left(G_{2}\right)=p\left(G_{2}\right)-1$.
But $q(G)=q\left(G_{1}\right)+q\left(G_{2}\right)+1$ and $p(G)=p\left(G_{1}\right)+p\left(G_{2}\right)$.

Therefore, $q(G)=q\left(G_{1}\right)+q\left(G_{2}\right)+1=\left(p\left(G_{1}\right)-1\right)+\left(p\left(G_{2}\right)-1\right)+1$

$$
=p\left(G_{1}\right)+p\left(G_{2}\right)-1=p(G)-1
$$

Hence $q(G)=p(G)-1$.
$(3) \Rightarrow(4)$:
Assume : G is conneced and $p=q+1$.
To prove : G is acyclic.
i.e., to prove there is no cycle in G.

Proof by cotradiction..
Suppose G contains a cycle of length $n \geq 3$.
$\Rightarrow p=p-n+n$ where n vertices belongs to C_{n} and $p-n$ vertices not in C_{n}.
Fix a vertex u in the cycle C_{n}.
Let v be the vertex not in C_{n}. (there are $p-n$ vertices are remaining in G)
Since G is connected, there exits a shortest (u.v)-path in G.
Let e be the edge on this shortest path incident with v.
Clearly, we obtained $p-n$ distinct edges in G.
$p=q+1 \Rightarrow q=p-1$.
Now, $p-1=q \geq n+(p-n)=p \Rightarrow p-1 \geq p$, a cotradiction.
Hence G is acyclic.
$(4) \Rightarrow(1)$:
Assume G is acyclic.
To prove G is a tree.
i.e., to prove G is connected.

Proof by cotradiction.
Suppose G is not conneced.
Then G has more than one component.
Let $G_{1}, G_{2}, \ldots, G_{k}, k \geq 2$ be the components of G.
Each component is connected and G is acyclic, \Rightarrow Each $G_{i}, i \geq 2$ is connected and acyclic.
\Rightarrow Each $G_{i}=\left(p_{i}, q_{i}\right), i \geq 2$ is a tree.
$\Rightarrow p_{i}=q_{i}+1$ for all $i, 1 \leq i k$.
But, $p=p_{1}+p_{2}+\ldots+p_{k}$
Therefore, $p=p_{1}+p_{2}+\ldots+p_{k}=\left(q_{1}+1\right)+\left(q_{2}+1\right)+\ldots+\left(q_{k}+1\right)$
i.e., $p=q_{1}+q_{2}+\ldots+q_{k}+k$, a cotradiction. $\quad($ since $p=q+1)$

Thus, G is connected.
Hence G is a tree.

Theorem 2. Every connected graph contains a spanning tree.
Proof. Let G be a connected graph.
Let \mathcal{C} be the collection of all connected spanning subgraphs of G.
Clearely, $\mathcal{C} \neq \phi($ since $G \in \mathcal{C})$.
Let $T \in \mathcal{C}$ be the connected spanning subgraph with least number of edges.
To prove : T be the spanning tree in G.
Suppose T contains no cycle.
$\Rightarrow T$ be a spanning tree of G, then the theorem is complete.
Otherwise, T contain a cycle of G
Then $T-e$ is connected.
$\Rightarrow T-e \in \mathcal{C}$, a contradicts the choice of T.
Hence T has no cycles.
Thus, T be the spanning tree in G.
Theorem 3. Every nontrivial tree has at least two vertices of degree one.
Proof. Let T be a nontrivial tree.
Then $d_{T}(v) \geq 1$ for all $v \in V(T)$.
(If $d_{T}(v)=0$ for some vertex v, then T is the trivial tree K_{1}, a contradiction.)
Since T is a tree, $\Rightarrow m(T)=n(T)-1$.
By Euler's theorem, $\sum_{v \in V(T)} d_{T}(v)=2 m(T)$
Hence $\sum_{v \in V(T)} d_{T}(v)=2 m(T)=2(n(T)-1)=2 n(T)-2$.
Proof by contradiction.
Suppose $d_{T}(v) \geq 2$ for all $v \in V(T)$, then
$2 n(T)-2=\sum_{v \in V(T)} d_{T}(v) \geq(2+2+\ldots+2)(n(T)$ times $)=2 n(T)$.
$\Rightarrow 2 n(T)-2 \geq 2 n(T)$, a contradiction.
So there is a vertex, say, x such that $d_{T}(x)=1$.
If $d_{T}(v) \geq 2$ for all $v \neq x$ and $v \in V(T)$, then
$2 n(T)-2=\sum_{v \in V(T)} d_{T}(v)=1+\sum_{v \in V(T), v \neq x} d_{T}(v)$

$$
\geq 1+(2+2+\ldots+2)(n(T)-1 \text { times })
$$

$$
=1+2(n(T)-1)=1+2 n(T)-2=2 n(T)-1
$$

$\Rightarrow 2 n(T)-2 \geq 2 n(T)-1$, a contradiction.
So there is a vertex, say, y, $y \neq x$ such that $d_{T}(y)=1$.
Hence T has at least two vertices of degree one.
Theorem 4. If u and v are nonadjacent vertices of a tree T.
Then $T+u v$ contains a unique cycle.
Proof. If P is the unique $u-v$ path in T
Then $P+u v$ is a cycle in $T+u v$.
As a path P is unique in $T, P+u v$ is a unique cycle in $T+u v$.

II. Distances in Graphs

Definition 4. (subtree)
A connected subgraph of a tree T is a subtree of T.

Definition 5. (Distance).

If vertices u and v are connected in G, the distance between u and v in G, denoted by $d_{G}(u, v)$, is the length of a shortest (u, v)-path in G.
If there is no path connecting u and v in G, define $d_{G}(u, v)$ to be infinite.
Definition 6. (eccentricity, radius, center)
Let G be a connected graph.
(i). If v is a vertex of G, its eccentricity $e_{G}(v)$ is defined by $e_{G}(v)=\max \left\{d_{G}(v, u): u \in V(G)\right\}$.
(ii). The radius of $G, r(G)$, is the minimum eccentricity of G, that is $r(G)=\min \left\{e_{G}(v): v \in V(G)\right\}$.
(iii). The diameter of G, $\operatorname{diam}(G)$, is the maximum eccentricity of G, that is $\operatorname{diam}(G)=\max \left\{e_{G}(v): v \in V(G)\right\}$.
(iv). A vertex v of G is called a central vertex if $e_{G}(v)=r(G)$.
(v). The set of all central vertices of G is called the center of G.

Remark. It is obvious from the definition that $r(G) \leq \operatorname{diam}(G)$.

Examples.

(i). For the complete graph K_{n},
$r\left(K_{n}\right)=\operatorname{diam}\left(K_{n}\right)=1$, since $d_{K_{n}}(v, u)=1(u \neq v)$.
(ii). For the complete bipartite graph $K_{m, n}$ with $\min \{m, n\} \geq 2$, $r\left(K_{m, n}\right)=\operatorname{diam}\left(K_{m, n}\right)=2$.
(iii). For the Petersen graph $P, r(P)=\operatorname{diam}(P)=2$.

Figure 3: Centre K_{1} or K_{2}

Theorem 5. (Jordan). Every tree has a center consisting of either a single vertex or two adjacent vertices.

Proof. The result if obvious for the trees K_{1} and K_{2}.
The vertices of K_{1} and K_{2} are central vertices.
Now let T be a tree with $n(T) \geq 3$.
Then T has at least two pendant vertices.
Clearly, the pendant vertices of T cannot be central vertices.
Delete all pendant vertices from T.
This results, a subtree T^{\prime} of T.
As any maximum distance path in T form any vertex of T^{\prime} ends at a pendant vertex of T.
The eccentricity of each vertex of T^{\prime} is one less than the eccentricity of the same vertex in T.
Hence, the vertices of minimum eccentricity of T^{\prime} are the same as those of T.
In other words, T and T^{\prime} have the same center.
Now if $T^{\prime \prime}$ is the tree obtained from T^{\prime} by deleting all the pendant vertices of T^{\prime}, then $T^{\prime \prime}$ and T^{\prime} have the same center.
Hence the centers of $T^{\prime \prime}$ and T are the same.
Since T is finite, repeat the process of deleting the pendant vertices in the successive subtrees of T until there results a K_{1} or K_{2}.
Hence, the center of T is either a single vertex or a pair of adjacent vertices.

