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I. Trees

Definition 1. (Acyclic graph).
An acyclic graph (or a forest) is one that contains no cycles.

Definition 2. (Tree).
A tree is a connected acyclic graph.
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Figure 1: (a) Tree (b) Forest (c) Graph

Remark.

(i) Each component of an acyclic graph is a tree.

(ii) An acyclic graph is a simple graph. Hence, every tree is a simple graph.
(iii) A subgraph of a tree is an acyclic graph.

Remark.
If e € E(G), then w(G —e) = w(G) or w(G —e) = w(G)+ 1.

Definition 3. (spanning tree)
A spanning subgraph of a graph, which is also a tree, is called a spanning tree of the graph.
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Figure 2: Spanning tree
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Theorem 1. Let G = (p, q) graph. The following statments are equivalent.
1. G is a tree.
2. Every two vertices of G are connected by a unique path.
3. G is conneced and p = ¢q + 1.
4. G is acyclic and p = g + 1.

Proof. (1)=(2):

Assume G be a tree.

By definition, G is connected

Therefore any two vertices of G are connected by a path.

To prove : Any two vertices of G are connected by a unique path.
Proof by contradiction.

Assume that there are two distinct (u,v)paths P; and P, in G.
Path P; is : wv

Path P is : uPv

Clearly, the graph (P; U P,) is connected.

But then (P, U P) = uPvu is a cycle in G, a contradiction to G is acyclic.
Thus, every two vertices of G are connected by a unique path.

(2)=(3):

Assume every two vertices of G are connected by a unique path.

To prove : G is conneced and p = ¢ + 1.

Since every two vertices of G are connected by a unique path, = G is connected.
Now we prove that ¢ = p — 1.

Proof by induction on p.

Ifp =1, G = K; and therefore ¢ = 0. Hencep — 1 =1-1 =0 = g.
Suppose that the theorem is true for all graphs G on fewer than p vertices.
Let G be a connected graph on p > 2 vertices.

Let e = wv € E(G).

Consider G — e.

As G is conneced and any two vertices of G are connected by a unique path.
= wev is the unique (u,v)path in G

= (G — e contains no (u, v)path.

= G — e is disconnected.

G is connected and G — e is disconnected implies that

wG—-e) =w@+1=1+1=2.

Let G1 and G5 be the two components of G — e.

Both G; and G are components = both G; and G5 are connected.
Moreover, p(G1) < p(G) and p(G2) < p(G).

Therefore, by the induction hypothesis, ¢(G1) = p(G1) — 1 and ¢(G2) = p(G2) — 1.
But ¢(G) = ¢(G1) + ¢(G2) + 1 and p(G) = p(G1) + p(Ga).
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Therefore, ¢(G) = q(G1) + q(G2) +1 = (p(G1) — 1)+ (p(G2) — 1) +1
= p(G1) + p(G2) — 1 = p(G) — 1.
Hence ¢(G) = p(G) — 1.

(3)=(4):

Assume : G is conneced and p = ¢ + 1.

To prove : G is acyclic.

i.e., to prove there is no cycle in G.

Proof by cotradiction..

Suppose G contains a cycle of length n > 3.

= p = p—n + n where n vertices belongs to C,, and p — n vertices not in C,,.
Fix a vertex u in the cycle C,,.

Let v be the vertex not in C,,. (there are p — n vertices are remaining in G)
Since G is connected, there exits a shortest (u.v)-path in G.

Let e be the edge on this shortest path incident with v.

Clearly, we obtained p — n distinct edges in G.

p=q+1=qg=p-—1

Now,p—1=¢>n+(p—n) =p = p—1 > p, a cotradiction.

Hence G is acyclic.

(4)=(1):

Assume G is acyclic.

To prove G is a tree.

i.e., to prove G is connected.

Proof by cotradiction.

Suppose G is not conneced.

Then G has more than one component.

Let G1,Gs,...,Gk, k > 2 be the components of G.

FEach component is connected and G is acyclic, = Each G;,7 > 2 is connected and acyclic.
= Each G; = (p;,qi),1 > 2 is a tree.

=p =q+1foralli 1 <ik.

But,p =p1 +p2 + ... + pi

Therefore, p = p1 + p2 + ... + o = (1 +1) + (+1) + ... + (g + 1)
ie,p=q + q+ ... + @ + k, a cotradiction. (since p=q+1)
Thus, G is connected.

Hence G is a tree.
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Theorem 2. Every connected graph contains a spanning tree.

Proof. Let G be a connected graph.

Let C be the collection of all connected spanning subgraphs of G.
Clearely, C # ¢ (since G € C).

Let T € C be the connected spanning subgraph with least number of edges.
To prove : T be the spanning tree in G.

Suppose T' contains no cycle.

= T be a spanning tree of G, then the theorem is complete.
Otherwise, T' contain a cycle of G

Then T — e is connected.

= T — e € C, a contradicts the choice of T.

Hence T has no cycles.

Thus, T be the spanning tree in G.

Theorem 3. Every nontrivial tree has at least two vertices of degree one.

Proof. Let T be a nontrivial tree.

Then dp(v) > 1for all v € V(T).

(If dr(v) = 0 for some vertex v, then T is the trivial tree K7, a contradiction.)

Since T is a tree, = m(T) = n(T) — 1.

By Euler’s theorem, }°, <7y dr(v) = 2m(T)

Hence >, c vy dr(v) = 2m(T) = 2(n(T) — 1) = 2n(T) - 2.

Proof by contradiction.

Suppose dr(v) > 2 for all v € V(T), then

2n(T) =2 =3, cv(r) dr(v) = (2+2+...4+2)(n(T) times) = 2n(T).

= 2n(T) — 2 > 2n(T), a contradiction.

So there is a vertex, say, « such that dr(z) = 1.

If dr(v) > 2for allv # x and v € V(T), then

2’)7,(T) -2 = Z’UG V(T) dT(U) =1+ ZUE V(T),v#x dT(v)
>1+24+2+...+2)(n(T) — 1 times)
=142n(T)-1) =1+2n(T) -2 = 2n(T) - 1.

= 2n(T) — 2 > 2n(T) — 1, a contradiction.

So there is a vertex, say, y, y # « such that dr(y) = 1.

Hence T has at least two vertices of degree one.

Theorem 4. If v and v are nonadjacent vertices of a tree T
Then T + uv contains a unique cycle.

Proof. If P is the unique u — v path in T
Then P + wv is a cycle in T + uv.
As a path P is unique in T, P 4+ uv is a unique cycle in T + uw.
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II. Distances in Graphs

Definition 4. (subtree)
A connected subgraph of a tree T' is a subtree of T.

Definition 5. (Distance).

If vertices u and v are connected in G, the distance between u and v in G, denoted by dg(u,v),
is the length of a shortest (u,v)}path in G.

If there is no path connecting v and v in G, define dg(u, v) to be infinite.

Definition 6. (eccentricity, radius, center)

Let G be a connected graph.

(i). If v is a vertex of G, its eccentricity eq(v) is defined by
eq(v) = max{dg(v,u) : u € V(G)}.

(ii). The radius of G, r(G), is the minimum eccentricity of G, that is
r(G) = min{eg(v) : v € V(G)}.

(iii). The diameter of G, diam(G), is the maximum eccentricity of G, that is
diam(G) = max{eq(v) : v € V(G)}.

(iv). A vertex v of G is called a central vertez if eq(v) = r(G).

(v). The set of all central vertices of G is called the center of G.

Remark. It is obvious from the definition that r(G) < diam(G).

Examples.

(i). For the complete graph K,
r(K,) = diam(K,) = 1, since dg, (v,u) = 1 (u # v).

(ii). For the complete bipartite graph K, , with min{m,n} > 2,
r(Kmn) = diam(Kp,,,) = 2.

(iii). For the Petersen graph P, r(P) = diam(P) = 2.

Figure 3: Centre K; or Ky
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Theorem 5. (Jordan). Every tree has a center consisting of either a single vertex or two adja-
cent vertices.

Proof. The result if obvious for the trees K7 and Ks.

The vertices of K1 and K5 are central vertices.

Now let T be a tree with n(T") > 3.

Then T has at least two pendant vertices.

Clearly, the pendant vertices of T' cannot be central vertices.

Delete all pendant vertices from T.

This results, a subtree 7" of T.

As any maximum distance path in T form any vertex of 7" ends at a pendant vertex of T.

The eccentricity of each vertex of T” is one less than the eccentricity of the same vertex in T
Hence, the vertices of minimum eccentricity of 7" are the same as those of T.

In other words, T and 7" have the same center.

Now if T" is the tree obtained from 7" by deleting all the pendant vertices of 7", then 7" and
T’ have the same center.

Hence the centers of 7" and T are the same.

Since T is finite, repeat the process of deleting the pendant vertices in the successive subtrees of
T until there results a K7 or Ko.

Hence, the center of T is either a single vertex or a pair of adjacent vertices.



