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I. Trees

Definition 1. (Acyclic graph).
An acyclic graph (or a forest) is one that contains no cycles.

Definition 2. (Tree).
A tree is a connected acyclic graph.

Figure 1: (a) Tree (b) Forest (c) Graph

Remark.
(i) Each component of an acyclic graph is a tree.
(ii) An acyclic graph is a simple graph. Hence, every tree is a simple graph.
(iii) A subgraph of a tree is an acyclic graph.

Remark.
If e ∈ E(G), then ω(G− e) = ω(G) or ω(G− e) = ω(G) + 1.

Definition 3. (spanning tree)
A spanning subgraph of a graph, which is also a tree, is called a spanning tree of the graph.

Figure 2: Spanning tree
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Theorem 1. Let G = (p, q) graph. The following statments are equivalent.
1. G is a tree.
2. Every two vertices of G are connected by a unique path.
3. G is conneced and p = q + 1.
4. G is acyclic and p = q + 1.

Proof. (1)⇒(2):
Assume G be a tree.
By definition, G is connected
Therefore any two vertices of G are connected by a path.
To prove : Any two vertices of G are connected by a unique path.
Proof by contradiction.
Assume that there are two distinct (u, v)-paths P1 and P2 in G.
Path P1 is : uv
Path P2 is : uP2v
Clearly, the graph (P1 ∪ P2) is connected.
But then (P1 ∪ P2) = uP2vu is a cycle in G, a contradiction to G is acyclic.
Thus, every two vertices of G are connected by a unique path.

(2)⇒(3):
Assume every two vertices of G are connected by a unique path.
To prove : G is conneced and p = q + 1.
Since every two vertices of G are connected by a unique path, ⇒ G is connected.
Now we prove that q = p − 1.
Proof by induction on p.
If p = 1, G ∼= K1 and therefore q = 0. Hence p − 1 = 1− 1 = 0 = q.
Suppose that the theorem is true for all graphs G on fewer than p vertices.
Let G be a connected graph on p ≥ 2 vertices.
Let e = uv ∈ E(G).
Consider G− e.
As G is conneced and any two vertices of G are connected by a unique path.
⇒ uev is the unique (u, v)-path in G
⇒ G− e contains no (u, v)-path.
⇒ G− e is disconnected.
G is connected and G− e is disconnected implies that
ω(G− e) = ω(G) + 1 = 1 + 1 = 2.
Let G1 and G2 be the two components of G− e.
Both G1 and G2 are components ⇒ both G1 and G2 are connected.
Moreover, p(G1) < p(G) and p(G2) < p(G).
Therefore, by the induction hypothesis, q(G1) = p(G1) − 1 and q(G2) = p(G2) − 1.
But q(G) = q(G1) + q(G2) + 1 and p(G) = p(G1) + p(G2).
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Therefore, q(G) = q(G1) + q(G2) + 1 = (p(G1) − 1) + (p(G2) − 1) + 1
= p(G1) + p(G2)− 1 = p(G)− 1.

Hence q(G) = p(G)− 1.

(3)⇒(4):
Assume : G is conneced and p = q + 1.
To prove : G is acyclic.
i.e., to prove there is no cycle in G.
Proof by cotradiction..
Suppose G contains a cycle of length n ≥ 3.
⇒ p = p− n + n where n vertices belongs to Cn and p− n vertices not in Cn.
Fix a vertex u in the cycle Cn.
Let v be the vertex not in Cn. (there are p− n vertices are remaining in G)
Since G is connected, there exits a shortest (u.v)-path in G.
Let e be the edge on this shortest path incident with v.
Clearly, we obtained p− n distinct edges in G.
p = q + 1⇒ q = p− 1.
Now, p− 1 = q ≥ n+ (p− n) = p ⇒ p− 1 ≥ p, a cotradiction.
Hence G is acyclic.

(4)⇒(1):
Assume G is acyclic.
To prove G is a tree.
i.e., to prove G is connected.
Proof by cotradiction.
Suppose G is not conneced.
Then G has more than one component.
Let G1, G2, . . . , Gk, k ≥ 2 be the components of G.
Each component is connected and G is acyclic, ⇒ Each Gi, i ≥ 2 is connected and acyclic.
⇒ Each Gi = (pi, qi) , i ≥ 2 is a tree.
⇒ pi = qi + 1 for all i, 1 ≤ i k.
But, p = p1 + p2 + . . . + pk
Therefore, p = p1 + p2 + . . . + pk = (q1 + 1) + (q2 + 1) + . . . + (qk + 1)
i.e., p = q1 + q2 + . . . + qk + k, a cotradiction. (since p = q + 1)
Thus, G is connected.
Hence G is a tree.
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Theorem 2. Every connected graph contains a spanning tree.

Proof. Let G be a connected graph.
Let C be the collection of all connected spanning subgraphs of G.
Clearely, C 6= φ (since G ∈ C).
Let T ∈ C be the connected spanning subgraph with least number of edges.
To prove : T be the spanning tree in G.
Suppose T contains no cycle.
⇒ T be a spanning tree of G, then the theorem is complete.
Otherwise, T contain a cycle of G
Then T − e is connected.
⇒ T − e ∈ C, a contradicts the choice of T.
Hence T has no cycles.
Thus, T be the spanning tree in G.

Theorem 3. Every nontrivial tree has at least two vertices of degree one.

Proof. Let T be a nontrivial tree.
Then dT (v) ≥ 1 for all v ∈ V (T ).
(If dT (v) = 0 for some vertex v, then T is the trivial tree K1, a contradiction.)
Since T is a tree, ⇒ m(T ) = n(T )− 1.
By Euler’s theorem,

∑
v ∈V (T ) dT (v) = 2m(T )

Hence
∑

v ∈V (T ) dT (v) = 2m(T ) = 2(n(T )− 1) = 2n(T )− 2.
Proof by contradiction.
Suppose dT (v) ≥ 2 for all v ∈ V (T ), then
2n(T )− 2 =

∑
v ∈V (T ) dT (v) ≥ (2 + 2 + . . .+ 2)(n(T ) times) = 2n(T ).

⇒ 2n(T )− 2 ≥ 2n(T ), a contradiction.
So there is a vertex, say, x such that dT (x) = 1.
If dT (v) ≥ 2 for all v 6= x and v ∈ V (T ), then
2n(T )− 2 =

∑
v ∈V (T ) dT (v) = 1 +

∑
v ∈V (T ), v 6=x dT (v)

≥ 1 + (2 + 2 + . . .+ 2)(n(T )− 1 times)
= 1 + 2(n(T )− 1) = 1 + 2n(T )− 2 = 2n(T )− 1.

⇒ 2n(T )− 2 ≥ 2n(T )− 1, a contradiction.
So there is a vertex, say, y, y 6= x such that dT (y) = 1.
Hence T has at least two vertices of degree one.

Theorem 4. If u and v are nonadjacent vertices of a tree T.
Then T + uv contains a unique cycle.

Proof. If P is the unique u− v path in T
Then P + uv is a cycle in T + uv.
As a path P is unique in T, P + uv is a unique cycle in T + uv.
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II. Distances in Graphs

Definition 4. (subtree)
A connected subgraph of a tree T is a subtree of T.

Definition 5. (Distance).
If vertices u and v are connected in G, the distance between u and v in G, denoted by dG(u, v),
is the length of a shortest (u, v)-path in G.
If there is no path connecting u and v in G, define dG(u, v) to be infinite.

Definition 6. (eccentricity, radius, center)
Let G be a connected graph.
(i). If v is a vertex of G, its eccentricity eG(v) is defined by

eG(v) = max{dG(v, u) : u ∈ V (G)}.
(ii). The radius of G, r(G), is the minimum eccentricity of G, that is

r(G) = min{eG(v) : v ∈ V (G)}.
(iii). The diameter of G, diam(G), is the maximum eccentricity of G, that is

diam(G) = max{eG(v) : v ∈ V (G)}.
(iv). A vertex v of G is called a central vertex if eG(v) = r(G).
(v). The set of all central vertices of G is called the center of G.

Remark. It is obvious from the definition that r(G) ≤ diam(G).

Examples.
(i). For the complete graph Kn,

r(Kn) = diam(Kn) = 1, since dKn(v, u) = 1 (u 6= v).
(ii). For the complete bipartite graph Km,n with min{m,n} ≥ 2,

r(Km,n) = diam(Km,n) = 2.
(iii). For the Petersen graph P, r(P ) = diam(P ) = 2.

Figure 3: Centre K1 or K2
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Theorem 5. (Jordan). Every tree has a center consisting of either a single vertex or two adja-
cent vertices.

Proof. The result if obvious for the trees K1 and K2.
The vertices of K1 and K2 are central vertices.
Now let T be a tree with n(T ) ≥ 3.
Then T has at least two pendant vertices.
Clearly, the pendant vertices of T cannot be central vertices.
Delete all pendant vertices from T.
This results, a subtree T ′ of T.
As any maximum distance path in T form any vertex of T ′ ends at a pendant vertex of T.
The eccentricity of each vertex of T ′ is one less than the eccentricity of the same vertex in T.
Hence, the vertices of minimum eccentricity of T ′ are the same as those of T.
In other words, T and T ′ have the same center.
Now if T ′′ is the tree obtained from T ′ by deleting all the pendant vertices of T ′, then T ′′ and
T ′ have the same center.
Hence the centers of T ′′ and T are the same.
Since T is finite, repeat the process of deleting the pendant vertices in the successive subtrees of
T until there results a K1 or K2.
Hence, the center of T is either a single vertex or a pair of adjacent vertices.
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